Is my water safe?
We are pleased to present this year’s Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report shows the results for our monitoring for the period of January 1st to December 31st, 2019. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?
Some people may be more vulnerable to contaminants in drinking water that the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Where does my water come from?
Our water is purchased from the City of Iuka which consists of four (4) wells; three that draws from the Paleozoic Aquifer and one drawing from the Fort Payne Chert Aquifer.

Source water assessment and its availability:
The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identify potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing at our office upon request. Listed below are the ratings for the wells of the City of Iuka where Walker Switch purchases water.

Well # 710006-01 – moderate rating on source water assessment
Well # 710006-02 – higher rating on source water assessment
Well # 710006-04 – moderate rating on source water assessment
Well # 710006-05 – lower rating on source water assessment

Why are there contaminants in my drinking water?
All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?
We encourage all customers with concerns or questions to meet with us. Our Association will conduct its annual membership meeting on Thursday, August 20, at 7:00 PM at Mt Gilead Church. We will answer any questions about this report at that time. This is a very important meeting in which we encourage all members to attend.
FOR MORE INFORMATION CONTACT:

Walker Switch Water Association

ATTN: Mike Ortner, President

Po Box 412; 305 West Eastport Street

Iuka, MS 38852

Phone: 662-424-0017

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Walker Switch Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for $10 per sample. Please contact 601.576.7582 if you wish to have your water tested.

Monitoring and reporting of compliance data violations

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. Beginning January 1, 2004, the Mississippi State Department of Health (MSDH) required public water systems that use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our water system failed to complete the chlorine monitoring requirements for the periods of 07/01/2019 – 09/30/2019 and 10/01/2019 -12/31/2019. Public notice was given and new samples were taken at a later date. This water system failed to complete the monitoring violation for total coliform for the periods of 07/01/2019-07/31/2019 and 11/01/2019 – 11/30/2019. Public notice was given and new samples were taken showing no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

To comply with the “Regulation Governing Fluoridation of Community Water Supplies”, MS0710006 is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year in which average fluoride sample results were within the optimal range of 0.6-1.2 ppm was 3. The percentage of fluoride samples collected in the previous calendar year that was within the optimal range of 0.6-1.2 ppm was 50%.

The table below lists all the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA and the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.
2019 WATER QUALITY DATA TABLE

<table>
<thead>
<tr>
<th>Contaminants (units)</th>
<th>MCLG or MRDLG</th>
<th>MCL, TT, or MRDL</th>
<th>Your Water</th>
<th>Range Low</th>
<th>Range High</th>
<th>Violation</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disinfectants & Disinfection By-Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine (ppm)</td>
<td>4</td>
<td>4</td>
<td>1.10</td>
<td>0.30</td>
<td>1.60</td>
<td>2019 No</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Chlorine (City of Iuka) (ppm)</td>
<td>4</td>
<td>4</td>
<td>1.00</td>
<td>0.50</td>
<td>1.00</td>
<td>2019 No</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>HAA5 (Haloacetic Acids) (ppb)</td>
<td>0</td>
<td>60</td>
<td>6.0</td>
<td>N/A</td>
<td>N/A</td>
<td>2017 No</td>
<td>By Product of drinking water disinfection</td>
</tr>
<tr>
<td>THM (Total Trihalomethanes) (ppb)</td>
<td>0</td>
<td>80</td>
<td>2.3</td>
<td>N/A</td>
<td>N/A</td>
<td>2017 No</td>
<td>By-Product of drinking water disinfection</td>
</tr>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>2</td>
<td>2</td>
<td>0.0091</td>
<td>N/A</td>
<td>N/A</td>
<td>2019 No</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium (ppm)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.001</td>
<td>N/A</td>
<td>N/A</td>
<td>2019 No</td>
<td>Discharge from steel and pulp mills; Erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate (measured as Nitrogen) (ppm)</td>
<td>10</td>
<td>10</td>
<td>0.16</td>
<td>N/A</td>
<td>N/A</td>
<td>2018 No</td>
<td>Runoff from fertilizer user; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Sodium (ppb)</td>
<td>N/A</td>
<td>1100</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2019 No</td>
<td>Erosion from natural deposits; Likely source of contamination - Road salt, water treatment chemicals, water softeners, and sewage effluents</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contaminants (units)</th>
<th>MCLG</th>
<th>AL</th>
<th>Your Water</th>
<th># Samples Exceeding AL</th>
<th>Exceeds AL</th>
<th>Sample Date</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Contaminants (Lead and Copper)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>1.3</td>
<td>1.3</td>
<td>0.2</td>
<td>0</td>
<td>No</td>
<td>2017</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
<tr>
<td>Lead (ppb)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>No</td>
<td>2017</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Important Drinking Water Definitions

- **MCLG - Maximum Contaminant Level Goal**: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **MCL - Maximum Contaminant Level**: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **AL - Action Level**: The concentration of a contaminant which, if exceeded, triggers a treatment or other requirements which a water system must follow.
- **TT - Treatment Technique**: A required process intended to reduce the level of a contaminant in drinking water.
- **MRDLG - Maximum Residual Disinfection Level Goal**: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial microbial contaminants.
- **MRDL - Maximum Residual Disinfection Level**: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- **MNR - Monitored Not Regulated**: Not monitored, but monitored when sample criteria is met.
- **MPL - State Assigned Maximum Permissible Level**: The level of a contaminant in drinking water below which there is no known or expected risk to health. MPLs are set as close to the MCLGs as feasible using the best available treatment technology.

Unit Descriptions

- **ppb**: Parts per billion, or micrograms per liter (µg/l)
- **ppm**: Parts per million, or milligrams per liter (mg/l)
- **pCi/L**: Picocuries per liter (a measure of radioactivity)
- **NA**: Not applicable
- **ND**: Not detected
- **NR**: Monitoring not required, but recommended